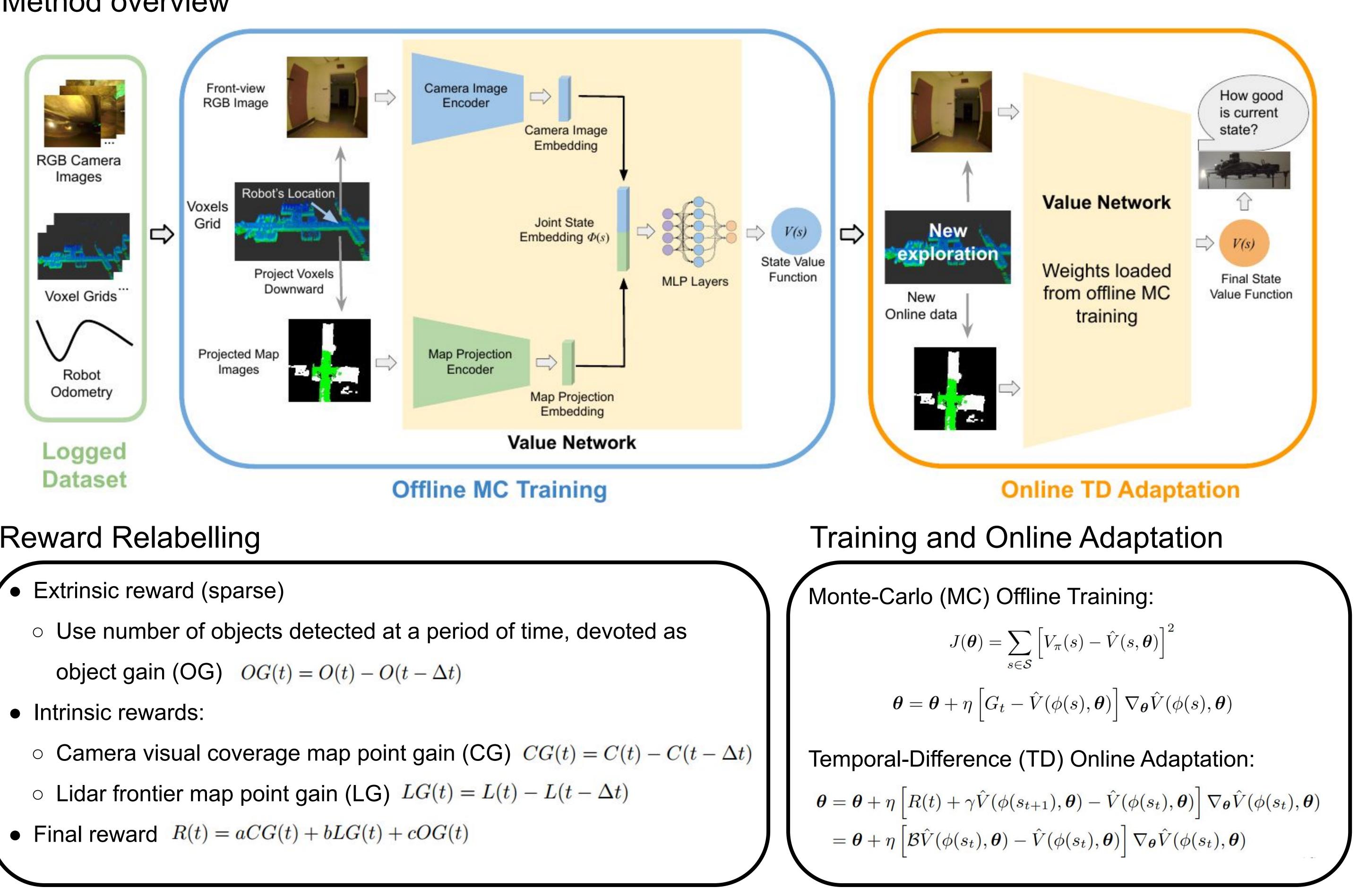


Method

Method overview



Reward Relabelling

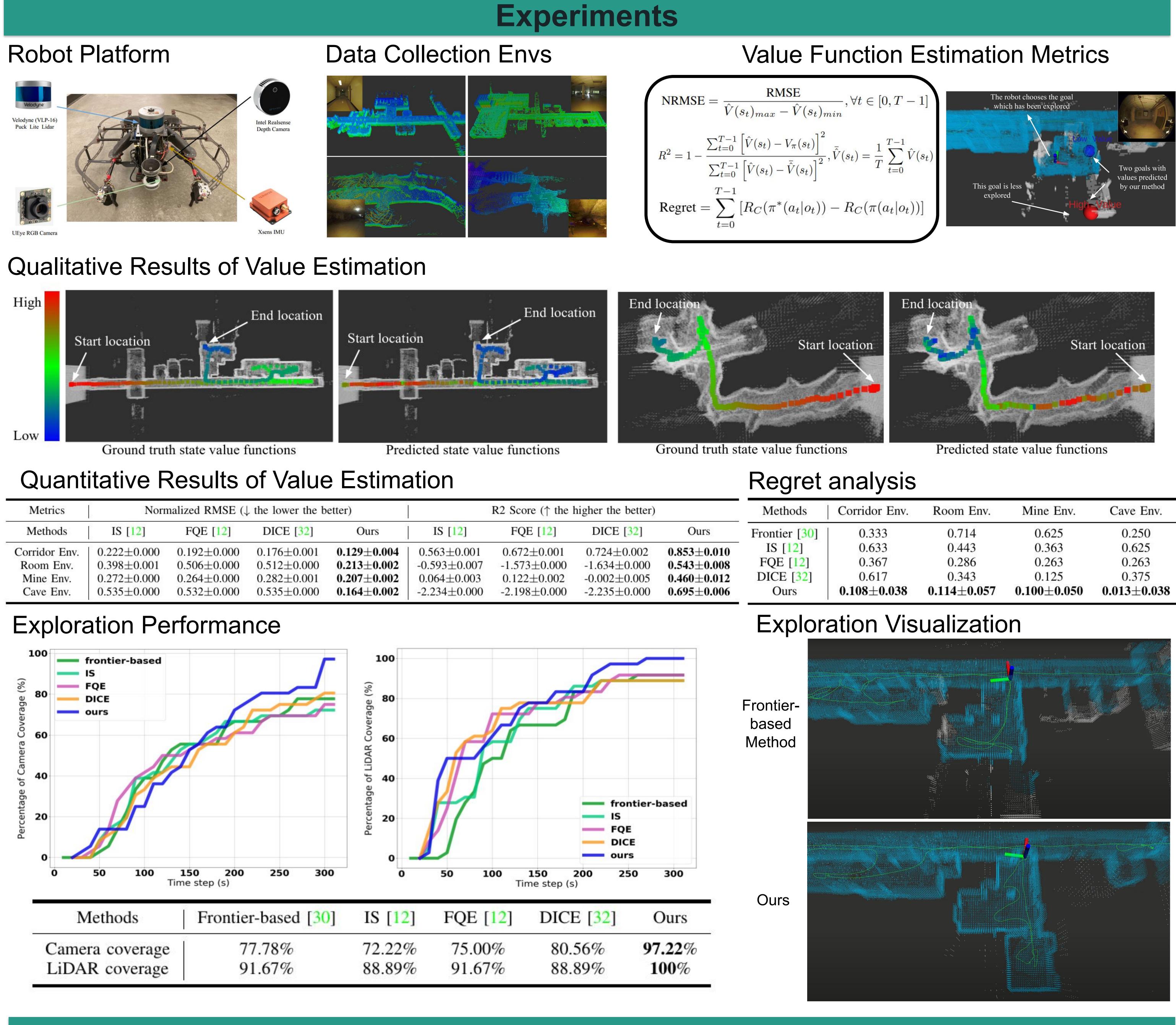
- Extrinsic reward (sparse) • Intrinsic rewards:

Off-Policy Evaluation with Online Adaptation for Robot Exploration in Challenging Environments

Yafei Hu¹, Junyi Geng^{1,2}, Chen Wang^{1,3}, John Keller¹, and Sebastian Scherer¹ ¹ CMU, ² Penn State, ³ SUNY Buffalo

Problem formulation

- Robot exploration as a POMDP
- Learn the value function of states
 - States visited by the robot in the trajectories
- The goal states that haven't been visited
- Value function learning as an off-policy evaluation (OPE) problem
- On-policy evaluation for real robots is **costly** and **dangerous**
- Data collection policy **different** from behaviour policy



Conclusion

Major takeaways: • We propose an offline MC pre-training and TD online adaptation method to learn value function for robot exploration • The proposed method outperforms other OPE baselines • Real robot testings show certain advantages over frontier-based baseline

https://jeffreyyh.github.io/opere/

$$\begin{split} \text{NRMSE} &= \frac{\text{RMSE}}{\hat{V}(s_t)_{max} - \hat{V}(s_t)_{min}}, \forall t \in [0, T-1] \\ R^2 &= 1 - \frac{\sum_{t=0}^{T-1} \left[\hat{V}(s_t) - V_{\pi}(s_t) \right]^2}{\sum_{t=0}^{T-1} \left[\hat{V}(s_t) - \bar{\hat{V}}(s_t) \right]^2}, \\ \bar{V}(s_t) &= \frac{1}{T} \sum_{t=0}^{T-1} \hat{V}(s_t) \\ \text{Regret} &= \sum_{t=0}^{T-1} \left[R_C(\pi^*(a_t | o_t)) - R_C(\pi(a_t | o_t)) \right] \end{split}$$

